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Abstract

Lagrangian- (and isopycnic-) vertical coordinate ocean models are subject to an exponentially growing

numerical instability in weakly stratified regions when thermobaricity is not accurately compensated.

Inaccurate compensation for compressibility in the pressure gradient terms leads to pressure gradient
truncation errors (due to the vertical discretization) that can drive the Lagrangian coordinate surfaces to

reinforce these errors. It is possible to avoid this instability while using the full non-linear equation of state

for seawater by using an optimal alternate discretization of the pressure gradient terms and extracting a

slowly spatially varying reference compressibility that approximates the compressibility of the ocean�s mean

state.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The full non-linear equation of state is trivial to incorporate into ocean models cast in Eulerian
vertical coordinates. Potential temperature and salinity are simply prognostic variables, and the
hydrostatic pressure at a grid point varies minimally with time. By contrast, in models that use a
Lagrangian vertical coordinate, the hydrostatic pressure of a grid point can vary substantially
with time as a result of the ocean circulation. Sun et al. (1999) present a method for using the full
non-linear equation of state in isopycnic-coordinate ocean models. They propose extracting the
portion of compressibility that is a function of pressure only from the calculations of pressure
gradient accelerations. This technique has proven to be useful, but it is illustrated here that an
inexact compensation for compressibility in the calculation of accelerations due to pressure
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gradients can lead to a numerical instability that is unique to weakly stratified regions of
Lagrangian vertical coordinate ocean models.

In essence, an imperfect compensation for compressibility leads to pressure gradient errors.
These are equivalent to the well-known pressure gradient errors in sigma-coordinate ocean
models, although usually of much smaller magnitude. In sigma-coordinate models, these lead to
finite steady circulations in an ocean that is initially at rest, but are not a source of unbounded
growth (e.g., Mellor and Wang, 1996). With a Lagrangian vertical coordinate, the pressure gra-
dient errors can cause the coordinate interfaces in weakly stratified regions to migrate in a way
that amplifies the pressure gradient errors, leading to an exponentially growing instability.

The consequences of this instability are readily evident in the five-day average sea surface height
fields shown in Fig. 1. The two panels differ only in the treatment of compressibility in the cal-
culation of the pressure gradient accelerations. The source of the instability lies in the very warm
and weakly stratified abyssal Mediterranean; the abyssal velocities in the top case are very noisy
Fig. 1. Five-day average sea surface height of a 48-layer 1-degree resolution global isopycnic-coordinate model after 20

days. The two panels differ only in their treatment of compressibility––the top panel uses a compressibility that is

typical of the Weddell Sea (and essentially the same as proposed by Sun et al. (1999)), while the bottom panel uses a

horizontally variable fit to the observed compressibility and the optimal discretization of compressibility in the pressure

gradient calculation (described later). Both panels use a contour interval of 10 cm.



Fig. 2. Five-day average interface heights in the eastern Mediterranean along 33.5�N after 20 days for the same two

simulations shown in Fig. 1. The solid lines use the compressibility that is typical of the Weddell Sea, while the dotted

line uses a horizontally variable reference compressibility. Note the large excursions of the abyssal and thermocline

interface heights that only occur with an inappropriate reference compressibility. Note also that in the western subbasin

where the chosen target density surfaces provides no resolution of the abyssal structure, the thermocline interfaces do

not show the abrupt excursions, even when the reference compressibility from the Weddell Sea is used.
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and tens of cm s�1, compared with smooth velocities of order mm s�1 in the lower case. This
instability also shows up very clearly in the isopycnal surfaces, as seen in Fig. 2. With any globally
uniform compressibility profile, this instability will occur in either the weakly stratified and cold
Arctic and Antarctic waters or in the weakly stratified but warm Mediterranean. As will be
discussed later, this instability can be avoided by using a spatially variable reference compress-
ibility that closely follows the actual compressibility, while alternate discretizations of the pressure
gradient terms can greatly increase the tolerance to discrepancies between the reference and actual
compressibilities.

This instability can be illustrated easily in a simple two-layer system. Analysis of this system
shows that compressibility must be compensated accurately relative to the stratification to avoid
instability, and that stability can be enhanced by using an optimal alternate pressure gradient
discretization. This two-layer system represents any two layers of an isopycnic-coordinate model,
and the results can be applied directly to a system with an arbitrarily large number of layers.

It is found that the instability described here can be avoided in Lagrangian coordinate simu-
lations of the current ocean state, while still using the full non-linear equation of state of seawater,
by extracting a compressibility that slowly varies horizontally from the density used in the
pressure gradient calculations and by using a pressure gradient discretization that minimizes the
impact of inexact extraction of compressibility.
2. Pressure gradient calculations in isopycnic models

Isopycnic-coordinate ocean models are a specific instance of Lagrangian vertical coordinate
models, in which the vertical coordinate tracks a potential density surface. Isopycnic-coordinate
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ocean models have been extensively used because of their unique ability to capture the nearly
adiabatic nature of the ocean interior (Bleck, 1998), their ability to represent dynamically inter-
esting flows with relatively few degrees of freedom (e.g. Hallberg and Gnanadesikan, 2001), and
the very transparent form in which potential vorticity dynamics appear in the model equations
(e.g. Hallberg and Rhines, 1996 or Williams and Roussenov, 2003). Although the thermobaric
instability is described here in the context of isopycnic models, it is generic to any ocean model in
which the circulation substantially determines the hydrostatic pressure (as opposed to the much
smaller dynamically active residual) of the grid points.

If the horizontal pressure accelerations can be cast as the gradients along the coordinate sur-
faces of a scalar field, the discrete form of the equations tends to have better conservation of
discrete analogs of energy and potential vorticity. Such a non-solenoidal form of the hydrostatic
pressure gradient accelerations can be found whenever the vertical coordinate is a function of
pressure and in situ density only (de Szoeke et al., 2000).
ar/p ¼ rp/ ¼ rs/ þ arsp ¼ rsð/ þ apÞ � prsa ¼ rað/ þ apÞ:

Here a is the in situ specific volume (the inverse of density), p is pressure, / ¼ gðz� zRefÞ is the
geopotential, and s is an arbitrary vertical coordinate. The subscripts on the grads indicate the
surfaces along which horizontal gradients are taken. Unfortunately, there is no materially con-
served function of pressure and in situ density only for the real equation of state of seawater.

To avoid solenoidal pressure gradient discretization errors, isopycnic models have traditionally
simply approximated the equations of motion as if the equation of state were that of some po-
tential density and ignored compressibility altogether (e.g. Oberhuber, 1993). The circulation
errors that result from this approximation can be unacceptably large (Sun et al., 1999; de Szoeke,
2000).

Sun et al. (1999) propose that the full effects of the non-linear equation of state can be included
with little algorithmic modification to existing isopycnic models by changing specific volume and
geopotential variables to closely related variables that compensate for compressibility. Similar
results can be derived more simply by defining a compressibility-compensated specific volume (a�)
and a corresponding counterpart of pressure (p�) as:
a� ¼ aðh; S; pÞ=F 0ðpÞ and p� ¼ F ðpÞ; ð1Þ

where F ðpÞ is a function of pressure that remains to be determined. The compressibility-com-
pensation will be achieved if F ðpÞ is chosen so that a� is nearly constant in regions of constant
potential temperature and salinity. The definitions (1) ensure that
a�rsp� ¼
a

F 0ðpÞrsF ðpÞ ¼
a

F 0ðpÞ F
0ðpÞrsp ¼ arsp:
Using the hydrostatic equations
o/
op

¼ �a and
o/
op�

¼ �a�; ð2Þ
where / is geopotential, the horizontal pressure gradient acceleration becomes
rp/ ¼ rs/ � o/
op

rsp ¼ rs/ þ arsp ¼ rs/ þ a�rsp� ¼ rsð/ þ a�p�Þ � p�rsa
�: ð3Þ
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In (3) the subscript s denotes horizontal gradients taken along surfaces of an unspecified,
monotonic-with-depth quantity s. In common isopycnic modeling practice, s might be potential
density referenced to 2000 dbar pressure (e.g. Sun and Bleck, 2001).

Eq. (3) can be simplified to
rp/ ¼ rsM� � p�rsa
� ð4Þ
by using a compressibility-compensated Montgomery potential
M� ¼ / þ p�a�: ð5Þ

The compensated Montgomery potential can be calculated from a differential equation with ex-
actly the form of the traditional, uncompensated Montgomery potential, as is seen by using the
hydrostatic Equation (2) in the derivative of (5) with a�:
oM�

oa� ¼ p�: ð6Þ
The function F ðpÞ is completely arbitrary at this point. Ideally, a� is nearly independent of
pressure in the absence of changes in potential temperature or salinity. This can be accomplished
by choosing F ðpÞ such that
oa�

op

����
h;S

¼ 1

F 0ðpÞ
oa
op

����
h;S

� a

F 02
dF 0

dp
	 0 ð7Þ
or
1

F 0ðpÞ
dF 0

dp
	 1

a
oa
op

����
h;S

: ð8Þ
The interpretation of these equations is greatly simplified if the scaling of F is chosen so that
p� 	 p. When compressibility is compensated over the depth of the ocean, F 0ðpÞ 	 1 to within
about 3%, so it is possible to set p� 	 p to within about 1.5%. To the extent that F 0ðpÞ satisfies (8),
the compressibility effects in the solenoidal term of (4) are minimized. But since F is a function
only of pressure, there is discretion in deciding which compressibility profile to fit. For example,
Sun et al. (1999) use a profile with a constant salinity of 35 psu and a potential temperature of 0
�C. The specific choice of a compressibility profile will be shown to have a great impact on
whether the discrete flow is in fact subject to thermobaric instabilities.
3. Thermobaric instability in a discrete two-layer example

The thermobaric numerical instability is most easily illustrated with a two-layer case (Fig. 3),
where the potential temperature and salinity in each layer are constant. There are no dynamically
active density anomalies within the two layers, but the dynamically inert background density
varies with pressure due to compressibility. The solutions closely follow the familiar calculation of
internal gravity wave frequencies (e.g. Gill, 1982). As such, the growth rates can be simply quoted
once the pressure gradient differences between the two layers are determined. This two-layer
example represents any two layers of an isopycnic-coordinate model. The conditions that lead to



Fig. 3. Schematic side view diagram of variables in two-layer calculation.
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the instability are identical if there are many layers, although the growth rates of the instability
may be larger if there are more layers involved.

The stability of the discrete system will be determined by calculating the differences between the
pressure-driven accelerations of the two layers. The system is assumed to be unstable when these
accelerations tend to reinforce perturbations to the depth of the interface between the two layers,
but neglected terms such as rotation or dissipation could balance these tendencies. Comparison
with the vertically continuous two-layer system will reveal that these instabilities are entirely due
to vertical discrete truncation errors.
3.1. The continuous solution with two layers

The continuous pressure gradient forces in the two-layer system are instructive to calculate for
several reasons. First, it is possible to directly calculate the differences in the accelerations both
using the gradient of geopotential along pressure surfaces, and via the Montgomery potential;
both are included for the benefit of a reader who may be more comfortable with one form or the
other. The steps in calculating the Montgomery potential form are essentially identical to those
used in the discrete version, and both the final form and the intermediate steps will prove useful
for comparison with the corresponding discrete expressions.

In this two-layer case, the specific volume profiles in the layers are given by:
a1 ¼ A1ðpÞ ¼ aðh1; S1; pÞ; ð9Þ
a2 ¼ A2ðpÞ ¼ aðh2; S2; pÞ 	 aðh1; S1; pÞ � DaD ¼ A1ðpÞ � DaD; ð10Þ
where h1 and h2 and S1 and S2 are the constant potential temperatures and salinities of the two
layers. The layers are separated by an interface at pressure p ¼ pðx; yÞ. These variables are de-
picted schematically in Fig. 3. The dynamically active specific volume difference between layers is
constant and given by DaD ¼ aðh1; S1; �pÞ � aðh2; S2; �pÞ, where �p is the average value of p. The
actual specific volume difference between the layers at pressure p is not constant, but for suffi-
ciently small perturbations to the interface pressure that jp � �pj � minðDp1;Dp2Þ, it can be
approximated as DaD with a smaller error than the other approximations that will be made here.
In equations,
A1ðpÞ � A2ðpÞ ¼ DaD þ ðp � �pÞ oa
op

����
h¼h1;S¼S1;p¼p

 
� oa

op

����
h¼h2;S¼S2;p¼p

!
þOððp � �pÞ2Þ 	 DaD:
Henceforth this small amplitude approximation will be made without comment.
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Starting at the bottom of the lower layer, the continuous geopotentials in the two layers are
readily calculated from the hydrostatic equation (2):
/2ðpÞ ¼ /B �
Z p

pB

A2ð~pÞd~p; ð11Þ

/1ðpÞ ¼ /B �
Z p

pB

A2ð~pÞd~p �
Z p

p
A1ð~pÞd~p: ð12Þ
The difference in the horizontal pressure gradient accelerations between the two layers is
rp/1 �rp/2 ¼ ½r/B þ A2ðpBÞrpB � A2ðpÞrp þ A1ðpÞrp
 � ½r/B þ A2ðpBÞrpB

¼ ½A1ðpÞ � A2ðpÞ
rp 	 DaDrp: ð13Þ
In the non-rotating case, displacements to the internal interface propagate away as internal
gravity waves with speeds
cInt 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DaDDp1Dp2=ðDp1 þ Dp2Þ

p
ð14Þ
(e.g. Gill, 1982, section 6.2), where Dp1 ¼ p � p0 and Dp2 ¼ pB � p are the pressure thicknesses
of the two layers, as shown in Fig. 3.

For later comparison with the discrete calculations, it is useful to calculate the horizontal
pressure gradient accelerations in the two layers again using the Montgomery potential form, (4).
Integrating the differential equation for the Montgomery potential (6) upward, the Montgomery
potentials of the two layers are
rsM�
2 ¼ rsð/2 þ a�

2p
�Þ ¼ rs /2

�
þ A2ðpÞ

F 0ðpÞ F ðpÞ
�

¼ r/B þ A2rpB � A2ðpÞrsp þ
A2ðpÞF 0ðpÞ

F 0ðpÞ rsp þ F ðpÞrs
A2ðpÞ
F 0ðpÞ

¼ r/B þ A2rpB þ p�rsa
�
2; ð15Þ

rsM�
1 ¼ rsð/1 þ a�

1p
�Þ ¼ rs /1

�
þ A1ðpÞ

F 0ðpÞ F ðpÞ
�

¼ r/B þ A2rpB � A2ðpÞrsp þ A1ðpÞrsp � A1ðpÞrsp þ A1ðpÞrsp þ F ðpÞrs
A1ðpÞ
F 0ðpÞ

	 r/B þ A2rpB þ DaDrsp þ p�rsa
�
1: ð16Þ
The difference in the horizontal pressure gradient accelerations of the two layers must agree with (13):
ðrsM�
1 � p�rsa

�
1Þ � ðrsM�

2 � p�rsa
�
2Þ ¼ ½A1ðpÞ � A2ðpÞ
rp 	 DaDrp: ð17Þ
The discrete case will later be shown to agree with (17) at leading order, but will also contain
thermobaric truncation error terms.
3.2. The vertically discrete solution with two layers

When the two-layer system is vertically discretized but kept horizontally continuous, the only
real discretization choice is the pressure at which to evaluate the layer specific volume, a. It is
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assumed that this layer specific volume is used in the hydrostatic equation, (2). In isopycnic
models, it is customary to use the pressure at the top of a layer so that topography will not cause
accelerations when the isopycnals are flat (Sun and Bleck, 2001). In this section this convention
will be followed, although it will be shown later that the thermobaric instability still occurs if other
choices are made.

The difference in the discrete pressure–force accelerations of the two layers is straightforward
to calculate once the layer specific volumes are specified. Using the pressure at the top of the layer
to determine the layer specific volumes gives
1 T

stand

densit
a�
1 ¼

aðh1; S1; p0Þ
F 0ðp0Þ

and a�
2 ¼

aðh2; S2; pÞ
F 0ðpÞ : ð18Þ
From the differential equation for the Montgomery potential (6), the horizontal gradients of the
Montgomery potential in the upper and lower layers are related by
rM�
2 �rM�

1 ¼ r½F ðpÞða�
2 � a�

1Þ
 ¼ ða�
2 � a�

1ÞF 0ðpÞrp þ F ðpÞrða�
2 � a�

1Þ: ð19Þ

From the Mean Value Theorem, for some pressure ~p1 within the range of the first layer (near the
mean pressure of the layer),
a�
1 ¼

aðh1; S1; pÞ
F 0ðpÞ � ðp � p0Þ

oa�

op

����
h¼h1;S¼S1;p¼~p1

¼ a�
2 þ

DaD

F 0ðpÞ � Dp1
oa�

op

����
1;~p1

: ð20Þ
In the second line of (20), the subscript indicating that the partial derivative of a� with pressure
is taken at values appropriate to the upper layer has been abbreviated as 1, ~p1 for notational
convenience. Eq. (19) can be rewritten as
rM�
2 �rM�

1 ¼
 

� DaD

F 0ðpÞ þ Dp1
oa�

op

����
1;~p1

!
F 0ðpÞrp þ F ðpÞrða�

2 � a�
1Þ

¼ �DaDrp þ F 0ðpÞDp1
oa�

op

����
1;~p1

rp þ F ðpÞrða�
2 � a�

1Þ: ð21Þ
The solenoidal term that arises with the Montgomery potential form of the horizontal pressure
gradient acceleration (4) typically uses the central pressure of a layer (Bleck, 2002) and the same
choice of layer specific volume as in the calculation of M . 1 The solenoidal terms in the two layers
become:
p�1ra�
1 ¼

F ðp0Þ þ F ðpÞ
2

r aðh1; S1; p0Þ
F 0ðp0Þ

and p�2ra�
2 ¼

F ðpÞ þ F ðpBÞ
2

r aðh2; S2;pÞ
F 0ðpÞ : ð22Þ
Combining (21) and (22), the difference in the horizontal pressure gradient accelerations (4)
become:
he Montgomery potential-based form of the pressure gradient terms described by Bleck (2002), and in long-

ing use in isopycnal models, is mathematically identical to the Jacobian form advocated by Lin (1997), once the

y profiles are chosen to be vertically constant within a layer.
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rM�
2 � p�2ra�

2 �rM�
1 þ p�1ra�

1

¼ �DaDrp þ F 0ðpÞDp1
oa�

op

����
1;~p1

rp þ F ðpÞ � F ðpBÞ
2

ra�
2 �

F ðpÞ � F ðp0Þ
2

ra�
1

¼ �DaDrp þ F 0ðpÞDp1
oa�

op

����
1;~p1

rp � F 0ð~p2Þ
Dp2
2

oa�

op

����
2;p

rp � F 0ð~p1Þ
Dp1
2

oa�

op

����
1;p0

rp0: ð23Þ
If compressibility is well compensated (i.e. (8) is satisfied), ‘F 0ðpÞ 	 1 to within about 3% for
oceanographic conditions, so
rM�
2 � p�2ra�

2 �rM�
1 þ p�1ra�

1 	 � DaD

 
� Dp1

oa�

op

����
1;~p1

þ Dp2
2

oa�

op

����
2;p

!
rp

� Dp1
2

oa�

op

����
1;p0

rp0: ð24Þ
The difference between this discrete solution and the true solution, (17), is
Error 	 Dp1
oa�

op

����
1;~p1

 
� Dp2

2

oa�

op

����
2;p

!
rp � Dp1

2

oa�

op

����
1;p0

rp0; ð25Þ
so this is a first order discrete truncation error in layer thickness, as is consistent with the formal
order of accuracy in the choice of a in the layers.

The last term in (24) is irrelevant for the purposes of evaluating the linear stability of the two-
layer system to perturbations of the internal interface height, as it provides no direct feedback of
perturbations to p on the flow. Substituting the entire term in parentheses in (24) for DaD in the
internal wave dispersion relation (14) shows that the flow in these two layers is unstable at all
horizontal wavelengths if
DaD � Dp1
oa�

op

����
1;~p1

þ Dp2
2

oa�

op

����
2;p

< 0: ð26Þ
In a non-rotating two-layer system, the growth of perturbations with horizontal wavenumber k
is given by
op
ot

¼ expðktÞ; ð27Þ
where
k 	 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� Dp1Dp2

Dp1 þ Dp2
DaD � Dp1

oa�

op

����
1;~p1

þ Dp2
2

oa�

op

����
2;p

 !vuut : ð28Þ
The mathematics behind this statement are identical to the calculation of the two-layer internal
gravity wave dispersion relation (e.g. Gill, 1982). The growth rates here may be comparable to the
frequencies of high mode internal gravity waves. Refining the vertical resolution of a model will
tend to simultaneously reduce DaD and Dpn proportionally, so while it may reduce the growth
rates, the conditions for instability (26) are essentially independent of vertical resolution. The sole
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controllable consideration in whether a Lagrangian vertical coordinate ocean model is subject to
this instability is the relative accuracy of the thermobaric compensation to the stratification of the
ocean.

There are two distinct manifestations of the pressure gradient truncation errors that lead to the
condition (26) for instability being satisfied; these are illustrated in Fig. 4. If the instability is
satisfied because
Fig. 4

perfec

comp

(b) sh

indica

but it
DaD � Dp1
oa�

op

����
1;~p1

< 0 ð29Þ
(illustrated in Fig. 4b), there will appear to be a negative apparent reduced gravity across the
interface (i.e. a�

2 > a�
1), leading to changes in M� between layers from (6) that depend on the

interface pressure with the opposite of the usual sign. On the other hand, if the instability occurs
predominantly because
DaD þ Dp2
2

oa�

op

����
2;p

< 0 ð30Þ
(illustrated in Fig. 4c), the layer below an interface that is displaced upward appears to become
lighter and the non-solenoidal term (i.e. �p�ra�) acts to reinforce this displacement; the hydro-
static pressure forces generated within a layer are toward lighter fluid. Instability occurs when the
sensitivity of the non-solenoidal term to the interface depth overwhelms the restoring tendency in
the gradient of the Montgomery potential. The former instability occurs at the base of thick layers
in waters that are much warmer than the reference profile upon which the compensating com-
pressibility is based. The latter manifestation occurs at the top of thick layers that are much colder
than the reference profile.
. Profiles of a� in layers of constant potential temperature and salinity in instances where (a) compressibility is

tly compensated, (b) compressibility is over-compensated (i.e. a colder profile is used to determine the reference

ressibility), and (c) the compressibility is under- or un-compensated. The circles in (b) and (c) and the dotted line in

ow the assumed values for the whole layer when a� is evaluated at the top of each layer. The lines and arrows in (c)

te how a� changes when the interface atop the layer moves––this occurs in the cases sketched in both (b) and (c),

is in case (c) that these changes are destabilizing.
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4. Physical conditions for instability

The stratification of the ocean itself determines how prone a Lagrangian vertical coordinate
model will be to thermobaric instability. The buoyancy frequency can be expressed as
Fig. 5

pressu

of 35
N 2 ¼ � g2

a2

da
dp

 
� oa

op

����
h;S

!
	 g2

a2

DaD

Dp
: ð31Þ
The Dp in (31) would be some appropriate (undetermined) average of Dp1 and Dp2 in the two-layer
example. This interpretation is most accurate in the limit of fine vertical resolution. The two-layer
instability condition, (26), can be reinterpreted as a constraint on how well compressibility must
be compensated, relative to the stratification, to avoid the instability. Assuming that the sign of
the errors in the compressibility does not change in adjacent layers where the errors themselves are
large, stability is ensured if
�2
a
g2

N 2 <
1

a�
oa�

op

����
h;S

¼ 1

a
oa
op

����
h;S

 
� 1

F 0
oF 0

op

!
<

a
g2

N 2: ð32Þ
Introducing the sound speed, cs, given by
c�2
s ¼ � 1

a2

oa
op

����
h;S

; ð33Þ
instability will be avoided if
� a
g2

N 2 < ac�2
s þ 1

F 0
oF 0

op
< 2

a
g2

N 2: ð34Þ
In the NODC 1998 ocean atlas (Levitus et al., 1998), there are many areas of the ocean with
stratifications weak enough that N 2 	 2� 10�7 s�2 over vertical scales of hundreds of meters.
. The compressibility of seawater in 10�12 Pa�1 as a function of salinity and potential temperature (left) at

res of 0 (solid) and 40 MPa (dashed) and as a function of potential temperature and pressure (right) at a salinity

psu. The contour interval is 10 · 10�12 Pa�1 in both cases.
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Notably, this value is typical of both the Weddell Sea and the Mediterranean Sea at depths of 1–3
km. But the temperatures and salinities of the two areas are very different––the Mediterranean is
about 13 K warmer and 3.7 psu saltier than the Weddell Sea at these depths––implying very
different compressibilities. As seen in Fig. 5, the compressibility of sea water, ac�2

s , varies with
temperature and salinity at rates of order o

oh ac�2
s

� 

	 �2:3� 10�12 Pa�1 K�1 and

o
oS ðac�2

s Þ 	 �1:1� 10�12 Pa�1 psu�1, compared with its mean value of order 4.5· 10�10 Pa�1. To
satisfy (34) in water with N 2 	 2� 10�7 s�2, the compressibility must be characteristic of water
that is no more than 1.8 K warmer or 0.9 K colder than is actually found (assuming the right
salinity) and no more than 4.2 psu saltier or 2.1 psu fresher (now assuming the right temperature).
Clearly there is no single reference compressibility profile that will avoid the thermobaric
numerical instability for both the Weddell Sea and the Mediterranean.
5. Alternate discrete forms

Returning to the two-layer example, there are three other discrete forms that are worth con-
sidering. As the derivation is essentially the same as in Section 3, the pertinent results will simply
be quoted. In each case the thermobaric instability is still present, but with a greater tolerance for
inaccuracy in the compensation of compressibility. The first two alternatives are obvious possi-
bilities––taking the layer average specific volume or the layer average Montgomery potential.
These can be combined to give an optimal form that eliminates the thermobaric error terms to
leading order.

First, suppose that the compensated layer specific volume is taken as the average of the values
at the top and bottom of a layer. Then the equivalent of (18) is
�a�
1 ¼

1

2

aðh1; S1; p0Þ
F 0ðp0Þ

�
þ aðh1; S1;pÞ

F 0ðpÞ

�
and �a�

2 ¼
1

2

aðh2; S2;pÞ
F 0ðpÞ

�
þ aðh2; S2; pBÞ

F 0ðpBÞ

�
; ð35Þ
while the counterpart of (20) is
�a�
1 � �a�
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DaD
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����
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: ð36Þ
The difference in the horizontal pressure gradient accelerations (corresponding to (23)) with this
first alternate discretization is
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The approximations leading to the final expression of (37) are that the mismatches between the
true compressibility and the reference compressibility are roughly constant within a layer and that
F 0ðpÞ 	 1 (as was assumed in deriving (24)). This alternative is intriguing, both because the
thresholds for instability are easier to avoid by a factor of 2 or 4, and because the thermodynamic
instability itself can be avoided by choosing F ðpÞ such that oa�=op < 0 wherever the stratification
is weak. (Underestimating the compressibility is the equivalent of choosing a warm reference
profile.) This form gives formal second order accuracy, as should be expected from a centered
discretization, but as with the previous scheme, the necessary conditions for stability (i.e. the
accuracy with which the reference compressibility must approximate the actual compressibility for
a given stratification) do not change with increasing resolution.

Unfortunately, there is a significant price to be paid for using this form in that the bottom
pressure gradients induce shears between the two layers. Since the bottom pressure gradients are
usually dominated by topography, using this form leads to a model that does not sit quiescently
when all of the interior isopycnals are flat. In the limit where the dynamically active density
gradients in (37) are much larger than the spurious compressibility terms, the internal interface
shape that does not drive acceleration of a shear is approximately given by
rp 	
� Dp2

4
oa�

op

���
2

DaD � Dp1
4

oa�
op

���
1
� Dp2

4
oa�
op

���
2

rpB: ð38Þ
Unless the compressibility is extremely well compensated in a�, the internal interfaces far above
topography may unphysically reflect the bottom topography where the near bottom stratification
is quite weak. In addition, if interface height diffusion is used as an eddy or numerical closure, the
interface will not match the resting depth (38) and there will be an unphysical flow around
topography.

If the layer specific volumes are evaluated at the mean pressure of the layers, the results are
equivalent to the previous case, except that the pressures at which oa�=op is evaluated in (37) are
different.

Another alternative that is worth considering is to assume that the a� within each layer vary
linearly with p�, and to calculate the average compensated Montgomery potentials of the layers
accordingly. From the hydrostatic equation in the form (6), if the pressure at the top and bottom
of layer N are pTN and pBN , then using the definitions
a�T
N ¼ aðhN ; SN ; pTNÞ

F 0ðpTNÞ
; a�B

N ¼ aðhN ; SN ; pBNÞ
F 0ðpBNÞ

; p�TN ¼ F ðpTNÞ and p�BN ¼ F ðpBNÞ; ð39Þ
the relationship between the Montgomery potentials at the layer�s top and bottom (denoted by
superscripts T and B) and its average over a layer are
M
�
N �M�T

N ¼ 1

6
a�B
N

�
� a�T

N



2p�TN
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þ p�BN


; ð40Þ

M�B
N �M

�
N ¼ 1

6
ða�B

N � a�T
N Þðp�TN þ 2p�BN Þ: ð41Þ
These can be combined with the Montgomery potential jump between layers given by (6),
M�T
Nþ1 �M�B

N ¼ ða�T
Nþ1 � a�B

N Þp�BN � ða�T
Nþ1 � a�B

N Þp�TNþ1; ð42Þ
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to give the relationship between the Montgomery potentials averaged over the two layers:
M
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6
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Eq. (43) is useful for analyzing the stability of this discrete form. A rearrangement of the
first line of (43) gives an alternate form of the same expression that will guide the discretization of
M
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N :
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The difference in the horizontal pressure gradient accelerations (corresponding to (23)) with this
discretization is:
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The assumptions leading to the final line of (45) are the same as for (37). The proclivity to
thermobaric instability is greatly reduced with this form of the equations, by a factor of 6 or 12
compared with evaluating the specific volumes at the top of each layer, and by a factor of 3
compared with using the central pressure of each layer to obtain a vertically constant specific
volume. With this form, the instability can be avoided by overestimating compressibility
(equivalent to taking a cold reference profile). While the impact of bottom pressures on the shear
between layers is reduced by a factor of 3 compared with the previous alternate scheme, it is still
present, along with the undesirable consequences.

Finally, it is worth noting that if the first two alternate discretizations (using a constant specific
volume at the average pressure and a linearly varying specific volume) are combined in a ratio
of 1:3 as M

^ �

N ¼ 3
4
M

�
N þ 1

4
bM �

N , the difference in the horizontal pressure gradient accelerations
becomes
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The final approximation in (46) is at the same level of error as the approximations in (24), (37),
and (45)––namely that the F 0ðpÞ and the compressibility mismatches (oa�=op) are both constant
through a layer. This final approximation agrees with the true solution, (17). The dependence of
the pressure-driven shear on the layer structure is localized to a single interface to one higher
power in Dp than in any of the discretizations discussed previously. With this discretization the
necessary conditions for instability become less restrictive as the vertical resolution is increased.
Put differently, to the extent that higher resolutions in density space enable the representation of
weaker stratification, this discretization is much less likely than the others to become unstable as
resolution is increased.

This optimal combination can be discretized quite readily. Eq. (44) implies that the vertically
averaged Montgomery potential assuming a linear specific volume profile (M

�
N ) is related to the

Montgomery potential based on a constant layer-mean specific volume ( bM �
N ) by:
M
�
N � bM �

N ¼ 1
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ða�B
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N Þðp�BN � p�TN Þ: ð47Þ
This potentially optimal discretization of M (M
^ �

N ) can then be found quite simply from
M
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N � bM �
N ¼ 1

8
ða�B

N � a�T
N Þðp�BN � p�TN Þ: ð48Þ
In practice this scheme works quite well, provided that the local compressibility is reasonably well
approximated. It is also relatively tolerant of mismatches between the reference and actual
compressibility, as seen in Fig. 6.

Simulations with a 48-layer isopycnic model show the behavior predicted by the analysis of the
two-layer system. Using a compressibility that is typical of the Weddell Sea, the abyssal Medi-
terranean is ill-behaved with all the discretizations (see Fig. 1). If the compressibility is typical of
the Mediterranean, the first alternate form exhibits strong interface excursions that reflect the
topography in weakly stratified abyssal waters in the rest of the ocean, as seen in Fig. 6. Also



Fig. 6. Height of a selected interface in the abyssal Pacific along 10.5�N using different reference compressibilities and

discretizations of the pressure gradient terms. This interface is atop the bottommost layer in much of this section and

within a few layers of the bottom in the remainder. The dot-dashed (jagged) lines use a compressibility that is char-

acteristic of the Mediterranean (12 �C warmer than the ambient water). The dashed lines use a compressibility that is

characteristic of the Weddell Sea (2 �C colder than the ambient waters). Panel (a) uses the average layer pressure to

calculate the constant layer density ( bM ), while (b) uses the optimal Montgomery potential (M
^

). The smoother black line

in both panels uses a locally appropriate compressibility (by using the spatially varying compressibility described in

Section 6), and it is indistinguishable regardless of which of the available discretizations are used. The bottom depth

along this transect is shown with the very heavy line, using the scale in the middle, which compresses the topography 12-

fold relative to the interface height. Note the strong correlation between the spikes in the dot-dashed line in (a) and the

topography.
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illustrated in the same figure, the optimal form gives much more reasonable solutions, even with
strongly mismatched compressibilities. It remains to be seen whether it is ultimately better to use
the original discretization using the pressure at the top of a layer to calculate the compressibility-
compensated layer density or this optimal form. The original form avoids having resting interfaces
that are artificially deformed to reflect the topography, while the optimal form minimizes both the
topographically induced excursions of resting interfaces and the propensity for the thermobaric
instability to occur. In either case, a horizontally varying reference compressibility dramatically
improves the simulations of global isopycnic models using the full non-linear equation of state.
6. Horizontally varying compressibility corrections

One way that the thermobaric instability might be avoided would be by defining the com-
pressibility-compensation function to be a function of both pressure and horizontal location, i.e.
p� ¼ F ðx; y; pÞ and a ¼ a�op�=op. Doing so can ensure that compressibility is well compensated
everywhere, but it leads to a third pressure gradient term. In this case
a�rsp� ¼ a
op
op�

op�

op
rsp

�
þrpp�

�
¼ arsp þ a�rpp�; ð49Þ
so
rp/ ¼ rs/ þ arsp ¼ rs/ þ a�rsp� � a�rpp� ¼ rsð/ þ a�p�Þ � p�rsa
� � a�rpp�: ð50Þ
The hydrostatic equation is unchanged by allowing the compressibility compensation to vary with
horizontal location,
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and so is the equation used to calculate the Montgomery potential,
oM�

oa� ¼ o

oa� ð/ þ a�p�Þ ¼ p�: ð52Þ
Although there are three pressure gradient terms in (50) that must be discretized, the third term
is not necessarily a great impediment. It is always possible to offset F so that it is a constant at
some chosen pressure, p

^
. For example, if the compressibility-compensation function satisfies (8)

for a reference profile for which
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����
h;S

¼ a
c2s
; ð53Þ
where cs is the speed of sound, an appropriate functional form for F is
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The first approximation here is valid since variations in R are small compared with its mean value,
while the second is based on the observation that R 	 4� 10�10 Pa�1, so for typical ocean depths
Rjp � p

^j6 � ð4� 10�10 Pa�1Þð4� 107 PaÞ ¼ 0:016 � 1. Both approximations applied in deriv-
ing the second and third lines of (54) are here only for illustration––in practice F ðpÞ might be a
direct fit of an analytically integrable function to the exponential inside of the integral on the first
line of (54) making any further approximation unnecessary. With these assumptions, the third
pressure gradient term becomes
a�rpp� 	 �1

2
a�ðp � p

^Þ2rpR: ð55Þ
The reference compressibility can be forced to vary slowly in space, so that the magnitude of its
gradient is small. For typical ocean properties, if the compressibility change due to a 1 �C dif-
ference in temperature occurs over a horizontal distance of 1000 km, rpR 	 2:5� 10�18 Pa�1 m�1,
so a typical acceleration from this term evaluated 1000 dbar from the chosen pressure where it
vanishes (p

^
) is a�rpp� 	 1:2� 10�7 m s�2. Even after discretization, this term will likely be bal-

anced by the other pressure gradient terms (as is mathematically true in the continuous limit), but
if (as a worst-case estimate) it is balanced instead by a typical midlatitude Coriolis acceleration,
the resultant velocity is only about 1.2· 10�3 m s�1.

It is possible to further reduce the impact of this third pressure gradient term by minimizing a
cost function based on the volume integrated square of the third pressure gradient term and
(motivated by (32)) the inverse stratification weighted misfit between the observed and compen-
sated compressibilities. That is, the cost function should ideally be something like
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where C is the relative weight of the two terms in units of an acceleration squared. A slightly
different stratification weighting should probably be used to avoid singularities in the cost func-
tion where the stratification vanishes and to introduce an estimate of the observed variability or
uncertainty in the compressibility, but it is useful to emphasize that more heavily stratified regions
are much more tolerant of mismatches in the compensation of compressibility. Actually solving
for the full three-dimensional compressibility function that minimizes (56) is likely to be overkill.

Instead of minimizing (56), it has been found in practice that an acceptable cost function ob-
tained by first fitting the observed compressibility with a function whose integral with pressure is
F0ðx; y; pÞ, and then setting the cost function to be
S ¼
Z Z

DðD2rF Þ � ðD2rF Þ þ cDðD2ðF � F0ÞÞ2 dA; ð57Þ
where D is the local depth of the ocean and c is a relative weight, now with units of an inverse
length squared. The D2 in the first term (57) reflects the dependence of the magnitudes of this
additional pressure gradient term on pressure in (55), now assuming that F is chosen to be
constant at p ¼ 0, while in the second term the D2 is simply a guess based on the observation that
the ocean�s stratification is far weaker deeper in the abyss than near the surface. The F 00 anomalies
in (56) are replaced with anomalies in F in (57) so that the equation will become separable; this is
justified by noting from (54) that the leading order anomalies in F are quadratic in pressure. The
model performance is not found to vary much with changes to either the value of c or even to the
power of D in the second term in (57). Choosing (57) as the cost function effectively concentrates
the significant gradients into shallow areas (such as Gibraltar) where the third pressure gradient
term has a minimal impact on the solution, while ensuring that the broad spatial variations of
compressibility are reasonably well captured.

The minimum of the cost function (57) is the steady-state solution of the equation
oF
ot

¼ L2

TD5
rðD5rF Þ þ cL2

T
ðF � F0Þ: ð58Þ
If F follows the same functional form as F0 and that functional form is chosen to be the sum of
horizontally varying fit coefficients times non-linear but analytically differentiable vertical func-
tions of pressure, (58) has the virtue that the optimal fit coefficients are independent of pressure.
The minimization need not be perfect, so (58) only needs to be integrated long enough to suppress
the smaller scales. Eq. (58) can be iterated independently for each of the fit coefficients for the
same amount of time, and the resulting smooth function will be the solution to (58) at every
pressure.

In practice, the compensation for the third pressure gradient term in (50) does appear to occur
almost entirely within the other pressure gradient terms. In the 48-layer global example, there is
very little difference between simulations with reference compressibilities generated using
c ¼ ð106 mÞ�2

and c ¼ ð104 mÞ�2
, even though there is typically a 4-fold difference in the mag-

nitude of the third pressure gradient term. (The velocity differences are of typically order of 10�4

m s�1 out to a few tens of days, at which point non-linearities make exact comparison less
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meaningful.) This result provides strong assurance that the full non-linear equation of state can be
used without an excessively strong dependence on the details of the reference compressibility that
is being extracted.
7. Discussion: avoiding the thermobaric instability

There are a number of ways that the thermobaric instability can be avoided. Some of these have
been mentioned previously in this manuscript, but they will be mentioned again here to present all
of the options in the same context.

Thermobaricity can be avoided altogether. This is essentially what is done when a potential
density is used for both the coordinate variable and for calculating pressure gradient accelerations
(e.g. Oberhuber, 1993). As discussed earlier, this introduces significant errors in the model�s
thermal wind shear (Sun et al., 1999). Eden and Willebrand (1999) suggest that by using a regional
fit to observed properties to obtain a quasi-neutral density variable that is a function only of
potential temperature and salinity, thermal wind shears and buoyancy frequency can be evaluated
quite accurately without consideration of thermobaricity. While this works well in a North
Atlantic simulation (Eden and Willebrand, 1999) (and probably would work equally well in other
regional simulations) it is problematic for global simulations and for long simulations in which the
regional watermass structure can change.

In isopycnic-coordinate models, it is always an option to choose the layer target densities to
avoid resolving the internal structure of very weakly stratified watermasses with anomalous
properties. In fact, since the target layer densities are chosen a priori, it is always possible to limit
the minimum resolvable stratification. For example, suppose that the smallest permissible strat-
ification that is desired in the coarse-resolution version of (32) is N 2

min;Eff 	 4� 10�7 s�2, which
would give a roughly 6K range of stability (adequate for the open ocean). Stability can then be
ensured if the smallest prescribed density difference between layers is
DqMin ¼ N 2
Min;Eff pMax=g2 	 ð4� 10�7 s�2Þð4� 107 PaÞ=ð9:8 m s�2Þ2 	 0:17 kgm�3: ð59Þ
This is not much coarser than resolutions typically used in models with relatively few layers, but
of course such density differences preclude resolution of the structure in weakly stratified regions.
It is possible to use finer resolution, provided that any weakly stratified regions that are then
resolved have compressibilities that are close to the reference value. For example, Sun and Bleck
(2001) have successfully run a global model using the full non-linear equation of state and the Sun
et al. (1999) treatment of thermobaricity without encountering the thermobaric instability. But
with only 15 interior layers, none of which capture the structure of the deep Mediterranean, they
avoid altogether the possibility that the interior Mediterranean would be unstable. They do
choose layers that describe the density of the Weddell sea, but the Sun et al. (1999) techniques
essentially extract a compressibility characteristic of a water column with a uniform temperature
and salinity of 0 �C and 35 psu. These values are close enough to the properties found in the
Weddell Sea to avoid instability. Subsequent HYCOM simulations using the Sun et al. (1999)
treatment of compressibility with higher vertical resolutions in the density range of Labrador Sea
water (which at its source is very weakly stratified and has temperatures that have ranged over the
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20th century between 2.7 and 3.6 �C (Dickson et al., 1996)) do appear to exhibit this instability (A.
Wallcraft, pers. comm.). The illustrations of the instability presented in the current paper used 45
interior isopycnal layers, including some with densities specifically chosen to resolve the vertical
structure of both the Mediterranean and Weddell Seas.

Orthobaric density (de Szoeke et al., 2000) is derived by fitting the observed sound speed
(essentially the compressibility) as a function of in situ density and pressure. Because of salinity
variations in the ocean, this can never be perfect, but with the added degrees of freedom from a fit
in two-dimensions, the typical standard deviations of sound speeds from the fit are less than 5
m s�1 (roughly equivalent to 1 �C) below the top few hundred meters (de Szoeke et al., 2000). The
thermobaric instability could only occur in weakly stratified water masses with atypically large
salinity anomalies, but as weakly stratified watermasses tend to be heavily weighted in the fitting
procedure, this is unlikely. Using orthobaric density for both the coordinate variable and for
calculating pressure gradients will likely avoid the instability described here. Although there are
other considerations apart from the calculation of pressure-driven accelerations (such as non-
materiality of the coordinate variable and a larger departure from current practice) that also arise
from using orthobaric density, it is a promising approach that should be further explored for use
in Lagrangian vertical coordinate modeling.

It might be possible to suppress the thermobaric numerical instability by choosing a maximal
estimate for compressibility, so that the instability would always appear as a negative apparent
reduced gravity between layers. It is easy to catch instances of negative apparent reduced gravities,
and the consequences can then be avoided by artificially adjusting the a� of one of the layers. This
would have the effect of altering the apparent stratification of the water column and locally
increasing the internal gravity wave speeds. This would seem to be an undesirable option, as it
alters the physics of the solution, even in instances where compensation between the two pressure
gradient terms would stabilize the solution anyway.

Finally, it has been demonstrated here that the combination of a more careful treatment of the
discretization of the pressure gradient terms and extracting a slowly horizontally varying reference
compressibility eliminates the thermobaric instability in a global isopycnic model simulation of
the current ocean state, even one with high resolution in density space. Each of these two mea-
sures alone may be adequate in some circumstances. Using the optimal discretization of the
pressure gradient term is likely to be sufficient in regional simulations where the horizontal
variations of compressibility are not especially large. In global models with coarse resolution in
density or small temporal variations of the compressibility, the current discretizations can
probably be used effectively when a spatially varying compressibility is extracted. The two mea-
sures taken together provide a robust solution to the thermobaric instability, useful even for
global ocean simulations with high resolution in density.

The price of the more careful discretization of the pressure gradient term is that the resting
isopycnal depths will weakly reflect the bottom topography, and there will be a weak abyssal flow
unless compressibility is well compensated. But note that if compressibility is perfectly compen-
sated, the changes to the discretization have no effect at all.

The price of extracting a spatially varying reference compressibility from the pressure gradient
calculations is that a third pressure gradient term enters the equations of motions. Like the second
term, this term is solenoidal, but it can be made small by choosing the reference compressibility to
vary slowly in the horizontal. By adding this third term, both the second and third terms can be



R. Hallberg / Ocean Modelling 8 (2005) 279–300 299
made much smaller than the along-coordinate gradient of the Montgomery potential, and the
cumulative truncation errors will be much smaller than the physical pressure gradient accelera-
tion. In adding this spatially varying compressibility, it could be argued that the ‘‘correct’’ state of
the ocean is somehow being fed to the model, but in the continuous limit none of the modifi-
cations suggested here change the equations being solved. In addition, if this approach is used in a
very long simulation in which the state of the ocean drifts substantially, it is always possible to
periodically re-fit the reference compressibility, provided that there is a gradual change between
old and new reference compressibilities to avoid an excessively vigorous adjustment.

With the new developments presented here, built upon the insights of Sun et al. (1999), or the
orthobaric density techniques of de Szoeke et al. (2000), it is very likely that difficulties with the
calculation of pressure gradient accelerations with the full non-linear equation of state will no
longer present a compelling barrier to the use of Lagrangian vertical coordinate ocean models in
realistic applications.
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